Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.736
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
2.
Nutrients ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612980

RESUMO

Recently, we reported that during the hypertrophic phase (230 days old) of hereditary cardiomyopathy of the hamster (HCMH), short-term treatment (20 days) with 250 mg/kg/day of taurine prevents the development of hypertrophy in males but not in females. However, the mortality rate in non-treated animals was higher in females than in males. To verify whether the sex-dependency effect of taurine is due to the difference in the disease's progression, we treated the 230-day-old animals for a longer time period of 122 days. Our results showed that long-term treatment with low and high concentrations of taurine significantly prevents cardiac hypertrophy and early death in HCMH males (p < 0.0001 and p < 0.05, respectively) and females (p < 0.01 and p < 0.0001, respectively). Our results demonstrate that the reported sex dependency of short-term treatments with taurine is due to a higher degree of heart remodeling in females when compared to males and not to sex dependency. In addition, sex-dependency studies should consider the differences between the male and female progression of the disease. Thus, long-term taurine therapies are recommended to prevent remodeling and early death in hereditary cardiomyopathy.


Assuntos
Cardiomiopatias , Mortalidade Prematura , Feminino , Masculino , Animais , Cricetinae , Cardiomiopatias/prevenção & controle , Coração , Taurina/farmacologia , Taurina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle
3.
Drug Des Devel Ther ; 18: 781-799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500692

RESUMO

Purpose: This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting ß-arrestin2 (ß-arr2)-mediated SERCA2a SUMOylation. Materials and Methods: The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. ß-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. ß-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to ß-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results: The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted ß-arr2 expression, whereas Barbadin (ß-arr2 inhibitor) or ß-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with ß-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion: QFYXF improves HF by promoting ß-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.


Assuntos
Insuficiência Cardíaca , Sumoilação , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460862

RESUMO

Hypertension, a prevalent cardiovascular ailment globally, can precipitate numerous complications, notably hypertensive cardiomyopathy. Meteorin-like (METRNL) is demonstrated to possess potential protective properties on cardiovascular diseases. However, its specific role and underlying mechanism in hypertensive myocardial hypertrophy remain elusive. Spontaneously hypertensive rats (SHRs) served as hypertensive models to explore the effects of METRNL on hypertension and its induced myocardial hypertrophy. The research results indicate that, in contrast to Wistar-Kyoto (WKY) rats, SHRs exhibit significant symptoms of hypertension and myocardial hypertrophy, but cardiac-specific overexpression (OE) of METRNL can partially ameliorate these symptoms. In H9c2 cardiomyocytes, METRNL suppresses Ang II-induced autophagy by controlling the BRCA2/Akt/mTOR signaling pathway. But when BRCA2 expression is knocked down, this effect will be suppressed. Collectively, METRNL emerges as a potential therapeutic target for hypertensive cardiomyopathy.


Assuntos
Cardiomiopatias , Hipertensão , Ratos , Animais , Ratos Endogâmicos WKY , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Hipertensão/complicações , Hipertensão/genética , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Autofagia/genética
5.
Rejuvenation Res ; 27(2): 51-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308474

RESUMO

Cardiac aging is defined as mitochondrial dysfunction of the heart. Vitamin D (VitD) is an effective agent in ameliorating cardiovascular disorders. In this study, we indicated the protective effects of VitD against cardiac aging. Male Wistar rats were randomly divided into four groups: control (CONT), D-galactose (D-GAL): aged rats induced by D-GAL, D-GAL + Ethanol: aged rats treated with ethanol, and D-GAL + VitD aged rats treated with VitD. Aging was induced by D-GAL at 150 mg/kg via intraperitoneal injection for 8 weeks. Aged rats were treated with VitD (D-GAL + VitD) by gavage for 8 weeks. The serum samples were used to evaluate biochemical factors, and heart tissues were assessed to determine oxidative stress and gene expression. The D-GAL rats exhibited cardiac hypertrophy, which was associated with decreased antioxidant enzyme activity, enhanced oxidative marker, and changes in the expression of mitochondrial genes in comparison with the control rats. Co-treatment with VitD ameliorated all these changes. In conclusion, VitD could protect the heart against D-GAL-induced aging via enhancing antioxidant effects, and the expression of mitochondrial genes.


Assuntos
Envelhecimento , Vitamina D , Ratos , Masculino , Animais , Vitamina D/farmacologia , Ratos Wistar , Envelhecimento/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Cardiomegalia/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Galactose/farmacologia
6.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398512

RESUMO

Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3ß (GSK-3ß) while concurrently attenuating the expression of the core protein ß-catenin in the Wnt/ß-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/ß-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.


Assuntos
Ácido Clorogênico , Via de Sinalização Wnt , Humanos , Isoproterenol/toxicidade , Ácido Clorogênico/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , beta Catenina/metabolismo
7.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
8.
Drug Discov Today ; 29(2): 103878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211819

RESUMO

Pathological cardiac hypertrophy is a common response of the heart to various pathological stimuli. In recent years, various histone modifications, including acetylation, methylation, phosphorylation and ubiquitination, have been identified to have crucial roles in regulating chromatin remodeling and cardiac hypertrophy. Novel drugs targeting these epigenetic changes have emerged as potential treatments for pathological cardiac hypertrophy. In this review, we provide a comprehensive summary of the roles of histone modifications in regulating the development of pathological cardiac hypertrophy, and discuss potential therapeutic targets that could be utilized for its treatment.


Assuntos
Cardiomegalia , Código das Histonas , Humanos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Processamento de Proteína Pós-Traducional , Epigênese Genética , Coração
9.
Mol Med Rep ; 29(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38275127

RESUMO

Heart failure is a primary cause of global mortality. In the present study, whether larixyl acetate, an inhibitor of transient receptor potential cation channel subfamily C member 6, attenuates pressure overload­induced heart failure in mice was investigated. To test this hypothesis, a transverse aortic constriction (TAC) animal model and an angiotensin II (Ang II)­treated H9c2 cell model were used. Cardiac and cellular structure, function and the expression levels of hypertrophy, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pmTOR/mTOR related mRNAs or proteins were assessed to explore the underlying molecular mechanisms. The results indicated that treatment with TAC or Ang II leads to significant hypertrophy and dysfunction of the heart or H9c2 cells, accompanied by an increase in ER stress, apoptosis and activation of the mTOR signaling pathway, and a decrease in autophagy. The administration of larixyl acetate attenuated these impairments, which can be reversed by inhibiting autophagy through the activation of the mTOR signaling pathway. These findings suggested that larixyl acetate can effectively protect against pressure overload­induced heart failure by enhancing autophagy and limiting ER stress and apoptosis through inhibition of the mTOR pathway.


Assuntos
Acetatos , Estenose da Valva Aórtica , Insuficiência Cardíaca , Naftalenos , Camundongos , Animais , Canal de Cátion TRPC6 , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Estenose da Valva Aórtica/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Apoptose
10.
Pharmacol Res Perspect ; 12(1): e1172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284173

RESUMO

While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Insuficiência Cardíaca , Inibidores da Fosfodiesterase 5 , Remodelação Ventricular , Animais , Masculino , Ratos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia
11.
Free Radic Biol Med ; 212: 477-492, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38190924

RESUMO

Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overload-induced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.


Assuntos
Flavonoides , Insuficiência Cardíaca , Dinâmica Mitocondrial , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/patologia
12.
Int Heart J ; 65(1): 119-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296564

RESUMO

Astaxanthin (ASX) is a natural antioxidant with preventive and therapeutic effects on various human diseases. However, the role of ASX in cardiac hypertrophy and its underlying molecular mechanisms remain unclear.Cardiomyocytes (AC16) were used with angiotensin-II (Ang-II) to mimic the cardiac hypertrophy cell model. The protein levels of hypertrophy genes, GATA4, and methyltransferase-like 3 (METTL3) were determined by western blot analysis. Cell size was assessed using immunofluorescence staining. The expression of circ_0078450, miR-338-3p, and GATA4 were analyzed by quantitative real-time PCR. Also, the interaction between miR-338-3p and circ_0078450 or GATA4 was confirmed by dual-luciferase reporter and RIP assays, and the regulation of METTL3 on circ_0078450 was verified by MeRIP and RIP assays.ASX reduced the hypertrophy gene protein expression and cell size in Ang-II-induced AC16 cells. Circ_0078450 was promoted under Ang-II treatment, and ASX reduced circ_0078450 expression in Ang-II-induced AC16 cells. Circ_0078450 could sponge miR-338-3p to positively regulate GATA4 expression, and GATA4 overexpression overturned the suppressive effect of circ_0078450 knockdown on Ang-II-induced cardiomyocyte hypertrophy. Also, the inhibitory effect of ASX on Ang-II-induced cardiomyocyte hypertrophy could be reversed by circ_0078450 or GATA4 overexpression. In addition, METTL3 mediated the m6A methylation of circ_0078450 to enhance circ_0078450 expression. Moreover, METTL3 knockdown suppressed Ang-II-induced cardiomyocyte hypertrophy by inhibiting circ_0078450 expression.Our data showed that ASX repressed cardiac hypertrophy by regulating the METTL3/circ_0078450/miR-338-3p/GATA4 axis.


Assuntos
MicroRNAs , Transdução de Sinais , Xantofilas , Humanos , Angiotensina II , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Proliferação de Células , Fator de Transcrição GATA4/genética , Metiltransferases/genética , MicroRNAs/genética
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1151-1162, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632551

RESUMO

Hyperthyroidism is associated with the alteration in molecular pathways involved in the regulation of mitochondrial mass and apoptosis, which contribute to the development of cardiac hypertrophy. Diminazene (DIZE) is an animal anti-infection drug that has shown promising effects on improving cardiovascular disease. The aim of the present study was to investigate the therapeutic effect of DIZE on cardiac hypertrophy and the signaling pathways involved in this process in the hyperthyroid rat model. Twenty male Wistar rats were equally divided into four groups: control, hyperthyroid, DIZE, and hyperthyroid + DIZE. After 28 days of treatment, serum thyroxine (T4) and thyroid stimulating hormone (TSH) level, cardiac hypertrophy indices, cardiac damage markers, cardiac malondialdehyde (MDA), and superoxide dismutase (SOD) level, the mRNA expression level of mitochondrial and apoptotic genes were evaluated. Hyperthyroidism significantly decreased the cardiac expression level of SIRT1/PGC1α and its downstream involved in the regulation of mitochondrial biogenesis, mitophagy, and antioxidant enzyme activities including TFAM, PINK1/MFN2, Drp1, and Nrf2, respectively, as well as stimulated mitochondrial-dependent apoptosis by reducing Bcl-2 expression and increasing Bax expression. Treatment with DIZE significantly reversed the downregulation of SIRT1, PGC1α, PINK1, MFN2, Drp1, and Nrf2 but did not significantly change the TFAM expression. Moreover, DIZE suppressed apoptosis by normalizing the cardiac expression levels of Bax and Bcl-2. DIZE is effective in attenuating hyperthyroidism-induced cardiac hypertrophy by modulating the mitophagy-related pathway, suppressing apoptosis and oxidative stress.


Assuntos
Hipertireoidismo , Tiroxina , Ratos , Masculino , Animais , Tiroxina/farmacologia , Diminazena/farmacologia , Diminazena/uso terapêutico , Sirtuína 1 , Ratos Wistar , Proteína X Associada a bcl-2 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Mitofagia , Fator 2 Relacionado a NF-E2 , Cardiomegalia/tratamento farmacológico , Hipertireoidismo/tratamento farmacológico , Hipertireoidismo/complicações , Proteínas Quinases
15.
Acta Pharmacol Sin ; 45(2): 312-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833535

RESUMO

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 µM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 µM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 µM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.


Assuntos
Calmodulina , Insuficiência Cardíaca , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Camundongos , Animais , Calmodulina/metabolismo , Calmodulina/farmacologia , Calmodulina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Transdução de Sinais , Remodelação Ventricular , Camundongos Endogâmicos C57BL
16.
Biochem Biophys Res Commun ; 693: 149367, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38091841

RESUMO

Cardiac remodeling (CR), characterized by cardiac hypertrophy and fibrosis, leads to the development and progression of heart failure (HF). Nowadays, emerging evidence implicated that inflammation plays a vital role in the pathogenesis of CR and HF. Astragaloside IV (AS-IV), an effective component of Astragalus membranaceus, exerts cardio-protective and anti-inflammatory effects, but the underlying mechanism remains not fully elucidated. This present study aimed to investigate the effects of AS-IV on cardiac hypertrophy and fibrosis in cultured H9C2 cells stimulated with LPS, as well as explore its underlying mechanisms. As a result, we found AS-IV could reduce the cell surface size, ameliorate cardiac hypertrophy and fibrosis in LPS-induced H9C2 cells. To specify which molecules or signaling pathways play key roles in the process, RNA-seq analysis was performed. After analyzing the transcriptome data, CCL2 has captured our attention, of which expression was sharply increased in model group and reversed by AS-IV treatment. The results also indicated that AS-IV could ameliorate the inflammatory response by down-regulating NF-κB signaling pathway. Additionally, a classical inhibitor of CCL2 (bindarit) were used to further explore whether the anti-inflammatory effect of AS-IV was dependent on this chemokine. Our results indicated that AS-IV could exert a potent inhibitory effect on CCL2 expression and down-regulated NF-κB signaling pathway in a CCL2-dependent manner. These findings provided a scientific basis for promoting the treatment of HF with AS-IV.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo , Fibrose , Quimiocina CCL2/metabolismo
17.
Acta Pharmacol Sin ; 45(4): 738-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097716

RESUMO

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 µM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.


Assuntos
Anticonvulsivantes , Bloqueadores dos Canais de Cálcio , Cardiomegalia , Quinase 3 da Glicogênio Sintase , Complexo de Endopeptidases do Proteassoma , Zonisamida , Animais , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Zonisamida/farmacologia , Zonisamida/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico
18.
Free Radic Res ; 58(1): 57-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145457

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role against various cardiovascular diseases. Omaveloxolone is a newly discovered potent activator of Nrf2 that has a variety of cytoprotective functions. However, the potential role of omaveloxolone in the process of pathological cardiac hypertrophy and heart failure are still unknown. In this study, an isoproterenol (ISO)-induced pathological cardiac hypertrophy model was established to investigate the protective effect of omaveloxolone in vivo and in vitro. Our study first confirmed that omaveloxolone administration improved ISO-induced pathological cardiac hypertrophy in mice and neonatal cardiomyocytes. Omaveloxolone administration also diminished ISO-induced cardiac oxidative stress, inflammation and cardiomyocyte apoptosis. In addition, omaveloxolone administration activated the Nrf2 signaling pathway, and Nrf2 knockdown almost completely abolished the cardioprotective effect of omaveloxolone, indicated that the cardioprotective effect of omaveloxolone was directly related to the activation of the Nrf2 signaling. In summary, our study identified that omaveloxolone may be a promising therapeutic agent to mitigate pathological cardiac hypertrophy.


Assuntos
Cardiomegalia , Fator 2 Relacionado a NF-E2 , Triterpenos , Camundongos , Animais , Isoproterenol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
19.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139099

RESUMO

Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-ß1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Paroxetina/farmacologia , Paroxetina/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Isoproterenol/toxicidade , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Ratos Wistar , Expressão Gênica
20.
Nutrients ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140281

RESUMO

The research purpose was to investigate the effects and the underlying molecular mechanisms of bovine bone gelatin peptides (BGP) on myocardial hypertrophy in spontaneously hypertensive rats (SHR). BGP relieved myocardial hypertrophy and fibrosis in SHR rats in a dose-dependent manner by reducing the left ventricular mass index, myocardial cell diameter, myocardial fibrosis area, and levels of myocardial hypertrophy markers (atrial natriuretic and brain natriuretic peptide). Label-free quantitative proteomics analysis showed that long-term administration of BGP changed the left ventricle proteomes of SHR. The 37 differentially expressed proteins in the high-dose BGP group participated in multiple signaling pathways associated with cardiac hypertrophy and fibrosis indicating that BGP could play a cardioprotective effect on SHR rats by targeting multiple signaling pathways. Further validation experiments showed that a high dose of BGP inhibited the expression of phosphoinositide 3-kinase (Pi3k), phosphorylated protein kinase B (p-Akt), and transforming growth factor-beta 1 (TGF-ß1) in the myocardial tissue of SHR rats. Together, BGP could be an effective candidate for functional nutritional supplements to inhibit myocardial hypertrophy and fibrosis by negatively regulating the TGF-ß1 and Pi3k/Akt signaling pathways.


Assuntos
Hipertensão , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Bovinos , Ratos Endogâmicos SHR , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gelatina , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Hipertensão/complicações , Pressão Sanguínea , Ratos Endogâmicos WKY , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Fibrose , Hipertrofia Ventricular Esquerda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...